MRRN (modified)
Reticulospinal (RS) neurons in the lamprey brain fluorescently labeled with TRDA.


(R) – review article (peer-reviewed); (B) – book chapter (peer-reviewed); (BE) – biomed engineering article (peer-reviewed); (C) – commentary; (T) – thesis;
All others are peer-reviewed neurobiology research articles
Google Scholar: Citations as of 5/2014 = 2140, h-index = 27, i10 index = 50

NOTE:  PDFs of articles available on request or visit Mcclellan lamprey papers:

1.    McClellan AD (1974) A system to measure a depth dependent pulse period for tracking aquatic animals in a noisy environment. M.S. Thesis, University of Maine. (T)

2.    McClellan AD (1976) Current source and 555 timer make linear v-to-f converter. Electronics 49: 108-109. (BE)

3.    McClellan AD (1977) Biphasic constant current stimulator for shocking marine animals. Behav Res Meth & Inst 9: 511-514. (BE)

4.    McClellan AD, Cohan CS (1978) Dual channel audio monitor for distinguishing action potentials from two different sources. Med Biol Eng & Comp 16: 203-206. (BE)

5.    Mpitsos GJ, Collins SD, McClellan AD (1978) Learning: A model system for physiological studies. Science 199: 497-506. (R)

6.    McClellan AD (1980) Feeding and regurgitation in Pleurobranchaea californica: Multibehavioral organization of pattern generation and higher order control. Ph.D. Thesis, Case Western Reserve University. (T)

7.    Grillner S, McClellan AD, Perret C (1981) Entrainment of the spinal pattern generators for swimming by mechano-sensitive elements in the lamprey spinal cord in vitro. Brain Res 217: 380-386.

8.    Grillner S, McClellan AD, Sigvardt K, Wallén P, Wilen M (1981) Activation of NMDA-receptors elicits “fictive locomotion” in lamprey spinal cord in vitro. Acta Physiol. Scand. 113: 549-551.

9.    McClellan AD (1981) Extracellular amplifier with bootstrapped input stage results in high common mode rejection. Med Biol Eng & Comp 19: 657-658. (BE)

10.  McClellan AD (1981) Multichannel z-modulation oscillographic intensification system for improving the contrast of photographed neurophysiological signals. Med Biol Eng & Comp 19: 673-678. (BE)

11.  McClellan AD (1981) Feedback provides stable bath ground for intracellular recording and stimulation. IEEE Trans BME 28: 362-364. (BE)

12.  McClellan AD (1981) Theoretical and practical considerations concerning an active current source for intracellular recording and stimulation. Med Biol Eng & Comp 19: 659-661. (BE)

13.  McClellan AD (1982) A differential displacement transducer for measuring relative movement in biological systems. J Neurosci Meth 5: 309-316. (BE)

14.  McClellan AD (1982) Movements and motor patterns of the buccal mass of Pleurobranchaea during feeding, regurgitation, and rejection. J Exp Biol 98: 195-211.

15.  McClellan AD (1982) Re-examination of presumed feeding motor activity in the isolated nervous system of Pleurobranchaea. J Exp Biol 98: 213-228.

16.  Grillner S, McClellan AD, Sigvardt K (1982) Mechano-sensitive neurones in the spinal cord of the lamprey. Brain Res 235: 169-173.

17.  Grillner S, McClellan AD, Sigvardt K, Wallén P (1982) On the spinal generation of locomotion, with particular reference to a simple vertebrate, the lamprey, In: Nervous System Regeneration, (Eds. B Haber, R Perez-Polo), Birth Defects: Original Article Series, Vol. 19, No. 4, pp. 347-356. (B)

18.  Grillner S, McClellan AD, Sigvardt K, Wallen P, Williams T (1982) On the neural generation of “fictive locomotion” in a lower vertebrate nervous system, in vitro. In: Brain Stem Control of Spinal Mechanisms (Ed. B Sjolund, A Bjorklund), Fenstrom Foundation, Series 1, Elsevier Biomedical Press, New York- Oxford. pp. 273-295. (B)

19.  Grillner S, Wallen P, McClellan A, Sigvardt K, Williams T, Feldman J (1983) The neural generation of locomotion in the lamprey – an incomplete account. In: Neural Origin of Rhythmic Movements, (Eds. B Roberts, A Roberts), Society for Experimental Biology, Cambridge University Press, Cambridge, pp. 285-303. (B)

20.  McClellan AD (1983) Isolated amplifier circuit for monitoring impedance, current passage, and recorded signal from metal microelectrodes. Med Biol Eng & Comp 21: 776-777. (BE)

21.  McClellan AD (1983) Higher order neurons in the buccal ganglia of Pleurobranchaea elicit vomiting motor activity. J Neurophysiol 50: 658-670.

22.  McClellan AD (1983) Higher order neurons in the cerebral ganglia of Pleurobranchaea have diverse effects on buccal motor patterns. J Comp Physiol A 153: 533-541.

23.  McClellan AD, Grillner S (1983) Initiation and sensory gating of “fictive” swimming and withdrawal responses in an in vitro preparation of the lamprey spinal cord. Brain Res. 269: 237-250.

24.  McClellan AD (1984) Descending control and sensory gating of “fictive” swimming and turning responses elicited in an in vitro brainstem/spinal cord preparation of the lamprey. Brain Res 302: 151-162.

25.  McClellan AD, Grillner S (1984) Activation of “fictive” swimming by electrical microstimulation of “locomotor command regions” in the brainstem of the lamprey. Brain Res 300: 357-362.

26.  McClellan AD, Farel PB (1985) Pharmacological activation of locomotor patterns in larval and adult frog spinal cords. Brain Res 332: 119-130.

27.  McClellan AD (1986) Command systems for initiating locomotor responses in fish and amphibians – Parallels to initiation of locomotion in mammals. In: Neurobiology of Vertebrate Locomotion, (Eds. S Grillner, P Stein, D Stuart, H Forssberg, R Herman), Wenner-Gren Symposium Series Vol 45, MacMillan Press, London, pp. 3-20. (B)

28.  McClellan AD (1987) In vitro CNS preparations: Unique approaches to the study of command and pattern generator systems in motor control. J Neurosci Meth 21: 251-264. (R)

29.  McClellan AD, Sigvardt KA (1988) Features of entrainment of spinal pattern generators for locomotor activity in the lamprey spinal cord. J Neurosci. 8: 133-145.

30.  McClellan AD (1988) Functional regeneration of descending command pathways for locomotion in the lamprey demonstrated in the in vitro lamprey CNS. Brain Res 448: 339-345.

31.  McClellan AD (1988) Brainstem command systems for locomotion in the lamprey: Localization of descending pathways in the spinal cord. Brain Res 457: 338-349.

32.  McClellan AD (1989) Control of locomotion in a lower vertebrate, the lamprey: Brainstem command systems and spinal cord regeneration. Amer Zool 29: 37-51. (R)

33.  McClellan AD (1990) Locomotor recovery in spinal-transected lampreys. Regenerated coordinating neurons and mechanosensory inputs couple locomotor activity across a spinal lesion. Neuroscience 35: 675-685.

34.  McClellan AD (1990) Locomotor recovery in spinal-transected lampreys. Role of functional regeneration of descending axons from brainstem locomotor command neurons. Neuroscience 37: 781-798.

35.  McClellan AD (1992) Functional regeneration and recovery of locomotor activity in spinal-transected lamprey. J Exp Zool 261: 274-287. (R)

36.  Davis GR, McClellan AD (1993) Time course of anatomical regeneration of descending brainstem neurons and behavioral recovery in spinal-transected lampreys. Brain Res 602: 131-137.

37.  Davis GR, Troxel MT, Kohler VJ, Grossmann ER, McClellan AD (1993) Time course of locomotor recovery and functional regeneration in spinal-transected lampreys: Kinematics and electromyography. Exp. Brain Res 97: 83-95.

38.  McClellan AD, Jang W (1993) Mechanosensory inputs to the central pattern generators for locomotion in the lamprey spinal cord: Resetting, entrainment, and computer modeling. J Neurophysiol 70: 2442-2454.

39.  McClellan AD, Brown G, Getting PA (1994) Dual effect of serotonin on swimming in the marine mollusk Tritonia. J Comp Physiol 174: 257-266.  (postdoc paper)

40.  Hagevik A, McClellan AD (1994) Role of excitatory amino acids in brainstem activation of spinal locomotor networks in larval lamprey. Brain Res 636: 147-152.

41.  Davis GR, McClellan AD (1994) Extent and time course of restoration of descending brainstem projections in spinal-transected lamprey. J Comp Neurol 344: 65-82.

42.  Davis GR, McClellan AD (1994) Long distance axonal regeneration of identified lamprey reticulospinal neurons. Exp Neurol 127: 94-105.

43.  McClellan AD (1994) Time course of locomotor recovery and functional regeneration in spinal-transected lamprey: In vitro brain/spinal cord preparations. J Neurophysiol 72: 847-860.

44.  Hagevik A, McClellan AD (1994) Coupling of spinal locomotor networks in larval lamprey revealed by receptor blockers for inhibitory amino acids: Neurophysiology and computer modeling. J Neurophysiol 72: 1810-1829.

45.  McClellan AD, McPherson D, O’Donovan MJ (1994) Combined retrograde labeling and calcium-imaging in spinal cord and brainstem neurons of the lamprey. Brain Res 633: 61-68.

46.  McClellan AD (1994) Functional regeneration and restoration of locomotor activity following spinal cord transection in the lamprey. Prog. Brain Res., vol. 103, Ed. F. Seil, Elsevier Press, pp. 203-217. (B)

47.  McClellan AD (1996) Organization of spinal locomotor networks: Contributions from model systems. Comments Theo Biol 4: 63-91. (R)

48.  McPherson DR, McClellan AD, O’Donovan MJ (1997) Optical imaging of neuronal activity in cells labeled by retrograde transport of calcium green dextran. Brain Res Protocols1: 157-164. (R)

49.  Rouse DT, McClellan AD (1997) Descending propriospinal neurons in normal and spinal cord-transected lamprey. Exp Neurol 146: 113-124.

50.  McClellan AD, Hagevik A (1997) Descending control of turning locomotor activity in larval lamprey: Neurophysiology and computer modeling. J Neurophysiol 78: 214-228.

51.  Rouse DT, Quan X, McClellan AD (1998) Biophysical properties of reticulospinal neurons in larval lamprey. Brain Res 779: 301-308.

52.  Paggett K, Gupta V, McClellan AD (1998) Adaptive variations of undulatory behaviors in larval lamprey: Comparison of swimming and burrowing. Exp Brain Res 119: 213-223.

53.  Calton J, Philbrick K, McClellan AD (1998) Anatomical regeneration and behavioral recovery following crush injury of the trigeminal nerve in lamprey. J Comp Neurol 396: 322-337.

54.  Zhang L, McClellan AD (1998) Fluorescent tracers as potential candidates for double labeling of descending brain neurons in larval lamprey. J Neurosci Meth 85: 51-62.

55.  McClellan AD (1998) Spinal cord injury: Lessons from locomotor recovery and axonal regeneration in lower vertebrates. The Neuroscientist 4: 250-263. (R)

56.  McClellan AD (1999) Functional axonal regeneration after spinal cord injury. Brain Res Bull 50: 403-404. (C)

57.  McClellan AD, Hagevik A (1999) Coordination of spinal locomotor activity in the lamprey:  Long distance coupling of spinal oscillators. Exp Brain Res 126: 93-108.

58.  Zhang L, McClellan AD (1999) Axonal regeneration of descending brain neurons in larval lamprey demonstrated by retrograde double labeling. J Comp Neurol 410: 612-626.

59.  Hagevik A, McClellan AD (1999) Coordination of locomotor activity in the lamprey: Role of descending drive to oscillators along the spinal cord. Exp Brain Res 128: 481-490.

60.  McClellan AD (2000) Special issue on “Neural Development of Motor Behavior”. Brain Res Bull 53: 471. (C)

61.  Zhang L, Palmer R, McClellan AD (2002) Increase in descending brain-spinal cord projections with age in larval lamprey:  Implications for spinal cord injury. J Comp Neurol 447: 128-137.

62.  Boyd M, McClellan AD (2002) Variations in locomotor activity parameters versus cycle time in larval lamprey. J Exp Biol 205: 3707-3716.

63.  Armstrong J, Zhang L, McClellan AD (2003) Axonal regeneration of descending and ascending spinal projection neurons in larval lamprey. J Exp Neurol 180: 156-166.

64.  Paggett K, Jackson AW, McClellan AD (2004) Organization of higher-order brain areas that initiate locomotor activity in larval lamprey. Neuroscience 125: 25-33.

65.  Zhang L, Palmer R, McClellan AD (2004) Conditioning lesions enhance axonal regeneration of descending brain neurons in spinal cord-transected larval lamprey. J Comp Neurol 478: 395-404.

66.  Jackson AW, Horinek D, Boyd M, McClellan AD (2005) Disruption of left-right reciprocal coupling in the spinal cord of larval lamprey abolishes brain-initiated locomotor activity. J Neurophysiol 94: 2031-2044.

67.  McClellan AD, Zhang L, Palmer R (2006) Fluorogold labeling of descending brain neurons in larval lamprey does not cause cell death. Neurosci Lett 401: 119-124.

68.  Ryan SK, Shotts LR, Hong S-K, Nehra D, Groat CR, Armstrong JR, McClellan AD (2007) Glutamate regulates neurite outgrowth of cultured descending brain neurons from larval lamprey. Dev Neurobiol 67: 173-188.

69.  Jackson AW, Pino F, Wiebe E, McClellan AD (2007) Locomotor behavior initiated by chemical microstimulation in higher locomotor centers and reticular nuclei in semi-intact preparations of larval lamprey. J Neurophysiol 97: 3229-3241.

70.  McClellan AD, Kovalenko M, Benes JA, Schulz DJ (2008) Spinal cord injury induces changes in electrophysiological properties and ion channel expression of reticulospinal neurons in larval lamprey. J Neurosci 28: 650-659.

71.  Shaw AC, Jackson AW, Holmes T, Thurman S, Davis GR, McClellan AD (2010) Descending brain neurons in larval lamprey: Spinal projection patterns and initiation of locomotion. Exp Neurol 224: 527-541.

72.  Jackson AW, McClellan AD (2011) Localization, pharmacology, and organization of brain locomotor areas in larval lamprey. Neuroscience 175: 235-250.

73.  McClellan AD (2011) Special issue on spinal cord injury in Brain Research Bulletin. Brain Res Bull 84: 265-266. (C)

74.  McClellan AD (2013) Spinal cord injury – The lamprey model. In: Animal Models of Spinal Cord Repair, (Ed. H Aldskogius), Neuromethods vol. 76, chap. 4, Humana Press, New York, pp. 63-108. (B)

75.  Pale T, Frisch EB, McClellan AD (2013) Cyclic AMP stimulates neurite outgrowth of lamprey reticulospinal neurons without substantially altering their biophysical properties. Neuroscience 245: 74-89.

76.  McClellan AD, Pale T, Messina A, Buso S, Shebib A (2014) Timing of locomotor movements and muscle burst activity during swimming in larval lamprey (submitted)